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Autism spectrum disorder (ASD) does not have a distinct pathogenesis
or effective treatment. Increasing evidence supports the presence of
immune dysfunction and inflammation in the brains of children with
ASD. In this report, we present data that gene expression of the
antiinflammatory cytokine IL-37, as well as of the proinflammatory
cytokines IL-18 and TNF, is increased in the amygdala and dorsolateral
prefrontal cortex of children with ASD as compared to non-ASD
controls. Gene expression of IL-18R, which is a receptor for both IL-18
and IL-37, is also increased in the same brain areas of children with
ASD. Interestingly, gene expression of the NTR3/sortilin receptor is
reduced in the amygdala and dorsolateral prefrontal cortex. Pretreat-
ment of cultured human microglia from normal adult brains with
human recombinant IL-37 (1 to 100 ng/mL) inhibits neurotensin (NT)-
stimulated secretion and gene expression of IL-1β and CXCL8. Another
key finding is that NT, as well as the proinflammatory cytokines IL-1β
and TNF increase IL-37 gene expression in cultured human microglia.
The data presented here highlight the connection between inflamma-
tion and ASD, supporting the development of IL-37 as a potential
therapeutic agent of ASD.
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Autism spectrum disorder (ASD) is a neurodevelopmental
condition characterized by impaired social interactions

and communication (1–3). ASD presently affects about 1 in 59
children and is estimated to reach 1 in 40 children in 2020 (4–6).
The complexity of the factors involved in the clinical picture of
ASD has hampered the development of effective treatments.
While the pathogenesis of ASD is unknown, it appears to involve
some immune (7–10), autoimmune (11, 12), or inflammatory (13)
component. In fact, perinatal brain inflammation (14, 15) has been
considered in the pathogenesis of neuropsychiatric disorders (16,
17), including ASD (13, 18).
A number of inflammatory molecules, such as interleukin-1β

(IL-1β), tumor necrosis factor (TNF), and chemokine (C-X-C
motif) ligand 8 (CXCL8), have been shown to be increased in the
serum, cerebrospinal fluid (CSF), and brain of many patients with
ASD (19–21). We had previously reported increased levels of
neurotensin (NT) in the serum of children with ASD compared to
non-ASD controls (22, 23). Our laboratory demonstrated that NT
stimulates gene expression and secretion of the proinflammatory
cytokine IL-1β and the chemokine CXCL8 from cultured human
microglia (24). A number of other authors have reported the acti-
vation of microglia in the brains of children with ASD (24–26),
supporting the presence of inflammation (27, 28).
Interleukin-37 (IL-37, previously known as IL-1F7) belongs to

the IL-1 family of cytokines (29) and is a natural suppressor of
inflammation (30–32). Five isoforms (a–e) have so far been
identified with the “b” isoform being the most well studied (33).
IL-37 is produced mainly by activated macrophages in response

to Toll-like receptor (TLR) activation. An IL-37 precursor (pro–
IL-37) is cleaved by caspase-1 into mature IL-37, some of which
(∼20%) enters the nucleus and the rest is released along with the
pro–IL-37 outside the cells (34) where both are biologically active.
Extracellular proteases can then process pro–IL-37 into a much
more biologically active form as shown for the recombinant IL-37b
with the N terminus Val46 (V46-218) (35).
Although no specific receptor for IL-37 has been identified, a

number of studies showed that extracellular IL-37 binds to the
alpha chain of the IL-18Rα (36, 37), but with much lower binding
affinity than that of IL-18 (38). Moreover, IL-37 binds to an IL-18
binding protein (IL-18BP) (39), and to the decoy receptor 8 (IL-
R8) (40) via which IL-37 inhibits innate inflammation (35, 41, 42)
in vitro and in vivo (42).
In this report we investigated IL-37 gene expression in the

amygdala and dorsolateral prefrontal cortex of children with ASD
because there is extensive evidence from animals and humans
connecting the amygdala to social behavior (43, 44). Moreover, the
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amygdala communicates directly with the dorsolateral prefrontal
cortex, which is important in behavioral processing (45).

Results
Subject Characteristics. There was no statistical difference in age
between ASD and non-ASD subjects. Samples were included if
there was no statistical difference in RNA integrity number (RIN)
and postmortem interval (PMI) as shown in SI Appendix, Table S1.
The only inclusion criteria used were males, 1 to 12 y of age, be-
cause ASD is 4 times more common in males than females.

Increased Gene Expression of IL-37 and Its Putative Receptor IL-18R in
the Amygdala and Dorsolateral Prefrontal Cortex of Children with ASD.
IL-37 gene expression is increased in the amygdala (P = 0.005, Fig.
1A) and dorsolateral prefrontal cortex (P = 0.004, Fig. 2A) of
patients with ASD, as compared to non-ASD controls.
We also measured gene expression of the proinflammatory cy-

tokine IL-18 and its receptor IL-18R, which also binds to IL-37. IL-
18 and IL-18R gene expression is increased in the amygdala (P =
0.002 and P = 0.002, respectively) of patients with ASD, as com-
pared to non-ASD controls (Fig. 1 B and C). IL-18R gene ex-
pression (P = 0.002), but not IL-18, is also increased in the
dorsolateral prefrontal cortex in patients with ASD (Fig. 2 B andC).
Gene expression of the proinflammatory cytokine TNF is also

increased in both the amygdala (P = 0.03) and dorsolateral pre-
frontal cortex (P = 0.006) of patients with ASD as compared to
non-ASD controls (Figs. 1D and 2D).

There Is a Significant Difference in Protein Expression of Only
Neurotensin Receptor 3 (NTR3/Sortilin) in the Amygdala and
Dorsolateral Prefrontal Cortex. NTR3/sortilin protein levels
are significantly decreased in both amygdala (P = 0.02) and dor-
solateral prefrontal cortex (P = 0.03) in patients with ASD as
compared to non-ASD controls (Fig. 3).
There are no statistically significant differences in the gene ex-

pression levels of NT, NTR1, NTR2, or NTR3/sortilin in patients
with ASD as compared to non-ASD controls either in the

amygdala (SI Appendix, Fig. S1) or dorsolateral prefrontal cortex
(SI Appendix, Fig. S2). The protein levels of NTR1 and NTR2 are
also unchanged (SI Appendix, Fig. S3).
The amygdala samples analyzed for NT receptor protein levels

were one less than in all other studies due to technical reasons.

IL-37 Inhibits NT-Stimulated Secretion and Gene Expression of IL-1β and
CXCL8 from Human Microglia. Pretreatment of microglia with human
recombinant IL-37 (1 ng/mL, 10 ng/mL and 100 ng/mL) for 24 h,
and then stimulation with NT (10 nM) for 24 h, significantly
inhibits secretion of IL-1β (P = 0.02, P = 0.02, and P = 0.004,
respectively) (Fig. 4A) and CXCL8 (P = 0.006, P = 0.001, and
P = 0.03, respectively) (Fig. 4B). Pretreatment of microglia with
human recombinant IL-37 (1 ng/mL, 10 ng/mL, and 100 ng/mL)
for 24 h, and then stimulation with NT (10 nM) for 6 h, sig-
nificantly inhibits gene expression of IL-1β (P = 0.02, P = 0.001,
and P = 0.001, respectively) (Fig. 4C) and CXCL8 (P = 0.03,
P = 0.001, and P = 0.02, respectively) (Fig. 4D).

NT, IL-1β, and TNF Induce Gene Expression of IL-37 in Human Microglia.
Stimulation for 6 h of human microglia by the microglia stimulant
NT (100 nM) as well as the cytokines secreted by microglia, IL-1β
(50 ng/mL) and TNF (10 ng/mL) increase (P = 0.016, P = 0.03,
and P = 0.016, respectively) gene expression of IL-37 (Fig. 5).
Lipopolysaccharide (LPS) used as a positive control also increases
IL-37 gene expression (Fig. 5).

Discussion
Microglia are responsible for innate immunity of the brain (46, 47).
Recent evidence indicates that brains of children with ASD have
activated microglia (25, 26, 48, 49). The increased gene expression
of TNF, IL-18, and IL-18R reported here supports the presence of
inflammation in the amygdala and dorsolateral prefrontal cortex of
children with ASD. We also show that the gene expression of IL-37
is increased in these same areas, but the reason for this increase
is not clear. A speculation why this might occur is that IL-37
gene expression may be increased in an effort to suppress the
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Fig. 1. Increased gene expression levels of IL-37, IL-18, IL-18R, and TNF in the amygdala of children with ASD. Gene expression levels of (A) IL-37, (B) IL-18, (C)
IL-18R, and (D) TNF of ASD and non-ASD subjects were measured by qRT-PCR. Gene expression was normalized to 18S rRNA control gene. Measurements were
repeated 3 times each.

21660 | www.pnas.org/cgi/doi/10.1073/pnas.1906817116 Tsilioni et al.

D
ow

nl
oa

de
d 

at
 P

al
es

tin
ia

n 
T

er
rit

or
y,

 o
cc

up
ie

d 
on

 J
an

ua
ry

 3
, 2

02
2 

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1906817116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1906817116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1906817116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1906817116/-/DCSupplemental
https://www.pnas.org/cgi/doi/10.1073/pnas.1906817116


www.manaraa.com

inflammation in that part of the brain. Increased IL-37 gene ex-
pression was reported in the brain of patients after ischemic stroke
and protected them from further inflammatory brain injury (50).
Other studies also showed elevated serum IL-37 concentration in
patients with sepsis (51) and in ankylosing spondylitis (52).
The findings presented in this paper are particularly important

since ASD has been associated with dysfunctional connectivity
within the amygdala, as well as between the amygdala and dorso-
lateral prefrontal cortex (53, 54). Bauman and Kemper (43) first
identified neuropathologic changes in the amygdala of postmor-
tem brains of patients with ASD. Children with ASD showed an
initial excess of neurons in the basal amygdala with a reduction in
adulthood, while normal controls have fewer neurons in childhood,
but a greater number in adulthood (55). Moreover, amygdala in
children with ASD had more growth compared to normotypic
children, as evidenced by higher dendritic density than age-matched
controls (56). There is extensive literature connecting the amygdala
to social behavior (43, 44) and to pathophysiologic responses to
stress (57).
We had previously reported that NT stimulates gene expression

and release of IL-1β and CXCL8 from cultured human microglia
(24). Plasma levels of IL-1β and CXCL8 have been reported to be

increased in children with ASD and were correlated with impaired
communication and aberrant behavior (58). Elevated levels of IL-
1β in neonatal blood from children with ASD were significantly
associated with severity of the disease (59). In the present study,
we show that NT, IL-1β, and TNF increase IL-37 gene expres-
sion in cultured human microglia. These findings are consistent
with a previous report that IL-37 expression was increased fol-
lowing stimulation with IL-1β, IL-18, and TNF in mononuclear
cells separated from peripheral blood (60, 61). We report no se-
cretion of IL-37 protein in cultured human microglia. Similarly, it
was previously shown that LPS stimulates gene expression, but
apparently no protein secretion in human macrophages (35), im-
plying that either no protein is produced or it is in some structural
form (such as its dimer) not detectable by the ELISA used.
Our data show that IL-37 inhibits secretion and gene expression

of IL-1β and CXCL8 from cultured human microglia stimulated by
the neuropeptide NT. IL-37 has been reported to inhibit the
generation of proinflammatory cytokines in vitro (62), as well as
in vivo (63). Recombinant IL-37 also reduced secretion of in-
flammatory molecules from human blood M1 macrophages
in vitro and mice in vivo (42). Increased gene expression of IL-37
was associated with suppression of IL-1β and IL-6 production from
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Fig. 3. Protein levels of NTR3/sortilin in amygdala and dorsolateral prefrontal cortex of children with ASD and non-ASD controls. Protein levels of NTR3/sortilin in
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as the loading control.
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Fig. 2. Increased gene expression levels of IL-37, IL-18, IL-18R, and TNF in the dorsolateral prefrontal cortex of children with ASD. Gene expression levels of (A) IL-
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peripheral blood mononuclear cells from subjects with systemic
inflammatory diseases (64–66). The precise inhibitory mechanism
of action of IL-37 is presently not known. Extracellularly, the IL-37
monomer is the active form involved in reducing innate immunity
(67); instead, homodimerization of IL-37 reduces its antiinflam-
matory activity (68). IL-37 may act by inhibiting the mammalian
target of rapamycin (mTOR) (69) since this complex was reported
to be involved in the stimulatory action of NT on human microglia
(24). Another thought is that IL-37 inhibits inflammasome acti-
vation as reported in murine aspergillosis (70).
Because NT stimulates human microglia, we investigated ex-

pression of NT and its receptors (NTR1, NTR2, and NTR3/
sortilin) in amygdala and dorsolateral prefrontal cortex. The pre-
sent data show only that NTR3/sortilin protein levels are decreased
in the amygdala and dorsolateral prefrontal cortex of children with
ASD, suggesting possible end-product inhibition due to chronic
stimulation by NT. Our laboratory had demonstrated that NT
stimulates proliferation of cultured human microglia and triggers
secretion of proinflammatory cytokines and chemokines through
activation of NTR3/sortilin (24). NT receptors in the human brain
transiently increase after birth (71) and are more concentrated in
the amygdala (72).
The source of endogenous NT is unknown, but we suggest that

it may be released locally in the amygdala and dorsolateral
prefrontal cortex. NT may also enter the brain through the blood

brain barrier (BBB) or the brain lymphatics, following which it
stimulates microglia via activation of the NTR3/sortilin receptor
(Fig. 6). The most likely cellular localization of NTR3/sortilin is
the microglia because they have been reported to express only
NTR3/sortilin (73). Activated microglia would then exhibit ab-
normal synaptic pruning and secrete IL-1β, CXCL8, and IL-18
gene expression of which along with its receptor IL-18R, are in-
creased in the brain areas studied. These processes would result in
neuronal damage and disrupted neuronal connectivity thus con-
tributing to the symptoms of ASD. We further hypothesize that IL-
37 is increased in these brain areas in an effort to inhibit the release
of the proinflammatory molecules thus providing a potential
treatment option for ASD (Fig. 6).
The fact that IL-37 gene expression is increased both in the brain

of children with ASD and in human microglia activated by NT
provides associations that could be important in the pathogenesis
of ASD. However, there are a number of limitations concerning
this study. There is no available information of the cognitive or
functional level before death, or the presence of any comorbidities
in the subjects with ASD. Our in vitro data were generated using
human microglia from normal adult brains that do not reflect how
microglia from patients with ASD would behave, especially since
ASD is a complicated disease (74). Moreover, the human microglia
we used are immortalized (SV-40 microglia) and are already fixed
in a proinflammatory phase and may not be able to generate
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maximal responses as compared to normal primary microglia.
However, we had previously shown that the response to NT was
similar whether immortalized or primary cells were used (24).
A clinically relevant concentration of NT is not presently known,
but we reported that serum levels of NT were ∼0.5 ng/mL in
children with ASD (23). Concentrations of either NT or IL-1β
would be expected to be higher when used in vitro especially with
immortalized cell lines.

Conclusion
The lack of reliable biomarkers (75) and specific pathogenesis (76)
for ASD has prevented effective treatments. The present results
provide a plausible pathogenetic process linking NT, originally
characterized by Leeman and coworkers (77), to focal inflamma-
tion of the brain. Use of IL-37 could have a major advantage over
drugs targeting IL-1β because IL-37 could inhibit secretion of not
only IL-1β, but other proinflammatory cytokines and chemokines.
IL-37 could, therefore, be developed as a treatment approach
for ASD.

Materials
Human recombinant IL-37, isoform b, N terminus Val46 was obtained from
R&D Systems (7585-IL catalog no., Minneapolis, MN). NT and LPS were pur-
chased from Sigma-Aldrich (St. Louis, MO). RNeasy Mini (Qiagen Inc., Valen-
cia, CA), and iScript cDNA synthesis kits were purchased from Bio-Rad
(Hercules, CA). Taqman gene expression primers were purchased from Ap-
plied Biosystems (Foster City, CA). ELISA kits for IL-1β and CXCL8 were pur-
chased from R&D Systems. Rabbit anti-human primary antibodies for IL-1β
and β-actin were purchased from Cell Signaling Technology (Danvers, MA)
and mouse anti-human ASC and cleaved IL-1β were obtained from Santa Cruz
Biotechnology (Dallas, TX).

Methods
Human Brain Samples. Postmortem human brain tissues of deceased Caucasian
male children (3 to 14 y old) with ASD (n = 8) and non-ASD (n = 8) were
obtained from the NIH NeuroBioBank at the University of Maryland, Balti-
more, MD (https://neurobiobank.nih.gov/ (application approved October 30,
2015/biospecimen availability confirmed). This work involves retrospective
analysis of brain samples of deceased children with no identifiers and did not
require institutional review board approval as this was obtained by University
of Maryland Neurobiobank at the source. Samples were obtained from dor-
solateral prefrontal cortex (Brodmann areas 46, 9) and amygdala (Brodmann
areas 6, 12) (SI Appendix, Table S1). The only inclusion criteria used were
males, 1 to 12 y of age, who had died in car accidents. Unfortunately, there is

no available information of how diagnosis of ASD was reached, what the
level of cognitive or functional level was before death, or the presence of any
comorbidities. Controls were selected without any known brain disease or
trauma and were matched to the subjects with ASD to the extent possible as
shown in SI Appendix, Table S1.

Frozen brain tissues were sectioned (30-μm thickness) using a cryostat. The
characteristics of the deceased subjects are listed in SI Appendix, Table S2.
Brain areas were available from the same subjects, which allowed direct
comparisons of outcome measures between regions within the same subjects.
Samples were provided from males only because ASD is 4 times more com-
mon in males than females, and to avoid any additional gender and hor-
monal variabilities. The deceased children whose brain samples were
analyzed were unrelated to those whose serum was obtained.

RNA Isolation from Brain Tissue. Total RNA was extracted from frozen brain
tissue specimens from ASD and non-ASD subjects using the mirVana miRNA
Isolation Kit (Ambion, Life Technologies, Carlsbad, CA) after frozen tissue
section homogenization. Reverse transcription (RT) was performed with 500
to 1,000 ng of total RNA using the SuperScript III First-Strand Synthesis System
(Invitrogen, Life Technologies, Carlsbad, CA). RNA purity (A260/280 ratios)
was calculated and RINs for all samples were reported by the brain bank.

Quantitative Real-Time Reverse Transcription PCR. Quantitative real-time re-
verse transcription PCR (qRT-PCR) was performed using Taqman gene expres-
sion assays (Applied Biosystems, Foster City, CA) to assess the gene expression of
IL-37 (Hs00367201_m1), IL-18 (Hs01038788_m1), IL-18R (Hs00175381_m1), and
TNF (Hs00174128_m1). All qPCR studies were conducted using inventoried
Taqman gene expression probes from Invitrogen, which were validated by the
vendor and publicly available. Samples were run for 45 cycles using the Applied
Biosystems 7300 Real-Time PCR System. Normalization of gene expression to
18SrRNA (4310893E) and comparison of gene expression between groups was
calculated according to the 2 -ΔΔCt method by Schmittgen (78).

For all mRNA studies, tissue samples were included if RIN was above 5.0.
However, due to evidence showing that RIN values are not always the most
accurate predictors of RNA quality in human postmortem brain samples (79),
PMI, and pH measures were used as indicators of tissue quality, as these
factors have been reported to correlate with protein levels (80). Furthermore,
cause of death was used as an additional indicator of tissue integrity (81).

NT Receptor Protein Measurements. Protein levels of NTR1, NTR2, and NTR3/
sortilin were determined by Western blotting analysis. Initially, brain tissues
were homogenized using lysis radioimmunoprecipitation (RIPA) buffer in the
presence of a protease inhibitor mixtures (Sigma-Aldrich), followed by soni-
cation using a Polytron (Brinkmann Instruments, Westbury, NY). The total
protein concentration was determined by bicinchoninic acid assay (Thermo
Fisher Scientific,Waltham,MA) and BSAwas used as standard. The total cellular
protein (10- or 20-μg aliquots) was separated using 4 to 12%Mini-Protean TGX
Precast gels under SDS denaturing conditions (Bio-Rad) and electrotransferred
onto nitrocellulose membranes (Bio-Rad). Blocking was carried out with 5%
BSA in Tris-buffered saline containing 0.01% Tween-20 (Sigma). The mem-
branes were probed with the following primary antibodies: NTR1, NTR2, and
NTR3/sortilin (Sigma-Aldrich) using valosin-containing protein (VCP) for the
loading control (Cell Signaling Technology). All proteins were visualized with
horseradish-peroxidase (HRP)-conjugated secondary antibodies and then by
enhanced SuperSignal West Pico chemiluminescence (Thermo Fisher Scientific).

HumanMicroglia Cell Culture. The immortalized humanmicroglia-SV40 cell line
derived from primary humanmicroglia was purchased fromApplied Biological
Materials Inc. (ABM Inc.; Richmond, BC, Canada) and cultured in Prigrow III
medium supplemented with 10% fetal bovine serum (FBS) and 1% penicillin/
streptomycin in type I collagen-coated T25-flasks (ABM Inc.). Microglia-SV40
maintain their phenotype and proliferation rates for over 10 passages, dur-
ing which all experiments were performed usingmultiple microglia thaws and
subcultured cells. Experiments were carried out in type I collagen coated plates
(BD PureCoat ECM Mimetic Cultureware Collagen I peptide plates, Becton
Dickinson, Bedford, MA) (82). Cell viability was determined by trypan blue
(0.4%) exclusion.

IL-1β and CXCL8 Secretion from Human Microglia. Microglia (0.5 × 105 cells/
well) were seeded in 12-well, type I collagen or poly-L-lysine–coated plates
(Becton Dickinson) for 24 h. Pretreatment with human rIL-37 (1 to 100 ng/mL)
for 24 h and then stimulation with NT (10 nM) or LPS (10 ng/mL) (Sigma-
Aldrich) for 24 h was carried out. Supernatant fluids were collected and IL-
1β (DY201) and CXCL8 (DY208) secretion from human microglia-conditioned
culture medium was quantified by using commercially available ELISA kits
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Fig. 5. NT, IL-1β, and TNF induce IL-37 gene expression. SV40 cells were
stimulated with NT (100 nM), IL-1β (50 ng/mL), and TNF (10 ng/mL) for 6 h to
measure gene expression of IL-37 by qRT-PCR. Gene expression was normalized
to GAPDH control gene. All conditions were performed in triplicates for each
dataset and repeated 3 times (n = 3). Significance of comparisons is denoted by
P < 0.05. LPS was used as a positive control.
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(R&D Systems) as per manufacturer’s instructions. For all experiments, the
control cells were treated with equal volume of culture medium and the
minimum detectable level for all mediators by ELISA was 5 pg/mL.

IL-1β and CXCL8 Gene Expression in Human Microglia. Microglia (1 × 105 cells
per well) were seeded in 6-well, type I collagen- or poly-L-lysine–coated
plates (Becton Dickinson) for 24 h before pretreatment with human rIL-37
(1 to 100 ng/mL) for 24 h and then stimulation with NT (10 nM) or LPS
(10 ng/mL) (Sigma-Aldrich) for 6 h was carried out. Cell pellets were collected and
total mRNA was extracted with an RNeasy Mini kit (Qiagen Inc.) in accordance
with the manufacturer’s intructions. An iScript cDNA synthesis kit (Bio-Rad) was
used for reverse-transcription of each mRNA sample. qRT-PCR was performed
using Taqman gene expression assays (Applied Biosystems). Samples were run
at 45 cycles using a real-time PCR system (7300, Applied Biosystems). Relative
mRNA levels were determined from standard curves run with each experiment.
The gene levels of IL-1β (Hs01555410_m1) and CXCL8 (Hs00174103_m1) were
measured and expression was normalized to GAPDH (4310884E) endogenous
control (Applied Biosystems).

Statistical Analysis. All conditions were performed in triplicate, and all exper-
iments were repeated at least 3 times (n = 3). Results from cultured cells are
presented as mean ± SD. Comparisons were made between control and
stimulated cells using the unpaired, 2-tailed, Student’s t test with significance
of comparisons denoted by the horizontal lines and by *P < 0.05, **P < 0.001,
and ***P < 0.0001 (83). Analysis of human brain samples is presented as a
scattergram with symbols representing individual data points and the hori-
zontal lines representing the mean for each group. Normality of distribution
was checked with the Shapiro–Wilk’s test. Depending on whether data were
normally distributed or not, comparison between the non-ASD and the ASD
groups was performed using either paired t test or Wilcoxon matched-pairs
signed rank test. Significance of comparisons is denoted by P < 0.05 (*), P <
0.001 (**), and P < 0.0001 (***). The analysis was performed by using the
GraphPad Prism version 7.0 software (GraphPad Software, San Diego).
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